Whatsapp

Condição de alinhamento de três pontos do plano

Estratégias de ensino-aprendizagem

PUBLICIDADE

As demonstrações de fórmulas e teoremas nas aulas de matemática são fundamentais para que nossos estudantes entendam e passem a gostar da disciplina, compreendendo o caráter investigativo e criativo do matemático ao obter o resultado procurado. Dessa forma, veremos uma demonstração para o método de verificação da condição de alinhamento de três pontos distintos no plano cartesiano. Percebemos que na maioria dos livros didáticos não há essa demonstração que, de certa forma, é simples, bastando conhecer os conceitos de semelhança de triângulos e segmentos proporcionais.

Considere três pontos distintos do plano: A(xA, yA), B(xB, yB) e C(xC, yC). Suponhamos que esses pontos estejam alinhados. Assim, teremos a seguinte representação gráfica.

Verifique que os triângulos ABD e BCE são semelhantes. Assim, obtemos:

Não pare agora... Tem mais depois da publicidade ;)


Aplicando a propriedade das proporções, teremos:

Desenvolvendo os produtos, obtemos:

Reorganizando os termos, teremos:

Vamos verificar que a expressão (I) é equivalente à:


Desenvolvendo o determinante, obtemos:

Constatamos que as duas expressões são equivalentes. Assim, podemos afirmar que A(xA, yA), B(xB, yB) e C(xC, yC) estão alinhados se:

Por Marcelo Rigonatto
Especialista em Estatística e Modelagem Matemática
Equipe Brasil Escola

Matemática - Estratégias de Ensino - Educador - Brasil Escola

Artigos Relacionados
Conheça uma sugestão de aula que introduz os conceitos de seno, cosseno e tangente usando apenas os materiais disponíveis em sala de aula.
  • Facebook Brasil Escola
  • Instagram Brasil Escola
  • Twitter Brasil Escola
  • Youtube Brasil Escola
  • RSS Brasil Escola